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SUMMARY

Approximate Bayesian computation has emerged as a standard computational tool when deal-
ing with intractable likelihood functions in Bayesian inference. We show that many common
Markov chain Monte Carlo kernels used to facilitate inference in this setting can fail to be vari-
ance bounding and hence geometrically ergodic, which can have consequences for the reliability
of estimates in practice. This phenomenon is typically independent of the choice of tolerance in
the approximation. We prove that a recently introduced Markov kernel can inherit the properties
of variance bounding and geometric ergodicity from its intractable Metropolis–Hastings counter-
part, under reasonably weak conditions. We show that the computational cost of this alternative
kernel is bounded whenever the prior is proper, and present indicative results for an example
where spectral gaps and asymptotic variances can be computed, as well as an example involving
inference for a partially and discretely observed, time-homogeneous, pure jump Markov process.
We also supply two general theorems, one providing a simple sufficient condition for lack of
variance bounding for reversible kernels and the other providing a positive result concerning
inheritance of variance bounding and geometric ergodicity for mixtures of reversible kernels.

Some key words: Approximate Bayesian computation; Geometric ergodicity; Local adaptation; Markov chain Monte
Carlo; Variance bounding.

1. INTRODUCTION

Approximate Bayesian computation refers to a branch of Monte Carlo methodology that uses
the ability to simulate data according to a parameterized likelihood function in lieu of compu-
tation of that likelihood to perform approximate, parametric Bayesian inference. These methods
have been used in an increasingly diverse range of applications since their inception in the con-
text of population genetics (Tavaré et al., 1997; Pritchard et al., 1999), particularly in cases where
the likelihood function is either impossible or computationally prohibitive to evaluate.

We consider a standard Bayesian setting with data y ∈Y, a parameter space �, a prior p :
�→R+ and, for each θ ∈�, a likelihood fθ : Y→R+. We assume that Y is a metric space and
consider the artificial likelihood

f εθ (y)= V (ε)−1
∫

Y
I (y ∈ Bε,x ) fθ (x) dx = V (ε)−1 fθ (Bε,y), (1)

which is commonly employed in approximate Bayesian computation. The value of ε can be
interpreted as the tolerance of the approximation. Here, Br,z denotes a metric ball of radius r
around z, V (r)= ∫

Y I (x ∈ Br,0) dx is the volume of a ball of radius r in Y, and I denotes the
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656 A. LEE AND K. ŁATUSZYŃSKI

indicator function. With a slight abuse of language, we refer to densities as distributions and,
where convenient, employ the measure-theoretic notation μ(A)= ∫

A μ(dλ). We consider situa-
tions in which both ε and y are fixed, and so define functions h :�→ [0, 1] andw : Y→ [0, 1] by

h(θ)= fθ (Bε,y) (2)

and w(x)= I (y ∈ Bε,x ) to simplify the presentation. The value h(θ) can be interpreted as the
probability of hitting Bε,y with a sample drawn from fθ .

While the artificial likelihood (1) is also intractable in general, the approximate posterior it
induces, π(θ)= h(θ)p(θ)/

∫
�

h(ϑ)p(ϑ) dϑ , can be dealt with by using constrained versions
of standard methods when sampling from fθ is possible for any θ ∈� (see, e.g., Marin et al.,
2012). In particular, one typically uses fθ as a proposal in such a way that its explicit compu-
tation is avoided. We are often interested in computing π(ϕ)= ∫

�
ϕ(θ)π(θ) dθ , the posterior

expectation of some function ϕ, and it is this type of quantity that can be approximated using
Monte Carlo methodology. We focus on one such method, Markov chain Monte Carlo, whereby
a Markov chain is constructed by sampling iteratively from an irreducible Markov kernel P with
unique stationary distribution π . We can use such a chain to estimate π(ϕ) directly with appropri-
ately normalized partial sums, i.e., given the realization θ1, θ2, . . . of a chain started at θ0, where
θi ∼ P(θi−1, ·), for i ∈N we compute the estimate

1

m

m∑
i=1

ϕ(θi ) (3)

for some m. Alternatively, the Markov kernels can be used within other methods such as sequen-
tial Monte Carlo (Del Moral et al., 2006). In the former case, it is desirable that a central limit
theorem hold for (3) and that the asymptotic variance var(P, ϕ) of (3) be reasonably small, while
in the latter case it is desirable that the kernel be geometrically ergodic, i.e., the m-fold iterate of
P , Pm(θ0, ·), should converge at a geometric rate in m to π in total variation (see, e.g., Roberts
& Rosenthal, 2004; Meyn & Tweedie, 2009), at least because this property is often assumed in
analyses (see, e.g., Jasra & Doucet, 2008; Whiteley, 2012). In addition, consistent estimation of
var(P, ϕ) is well established (Hobert et al., 2002; Jones et al., 2006; Bednorz & Łatuszyński,
2007; Flegal & Jones, 2010) for geometrically ergodic chains.

Motivated by these considerations, we study both the variance bounding (Roberts & Rosenthal,
2008) and geometric ergodicity properties of a number of reversible kernels used for approximate
Bayesian computation. For reversible P , a central limit theorem holds for all ϕ ∈ L2(π) if and
only if P is variance bounding (Roberts & Rosenthal, 2008, Theorem 7), where L2(π) is the
space of square-integrable functions with respect to π . Reversible kernels that are not variance
bounding can still produce Markov chains for which (3) satisfies a central limit theorem for some,
but not all, functions in L2(π).

Much of the literature is concerned with controlling the trade-off associated with the quality of
approximation (1), controlled by ε and manipulation of y, and counteracting computational diffi-
culties (see, e.g., Fearnhead & Prangle, 2012). We address here a separate issue, namely that many
Markov kernels used in this context are neither variance bounding nor geometrically ergodic, for
any finite ε under widely met assumptions when using local proposal distributions. As a partial
remedy, we show that under reasonably mild conditions, a kernel proposed in Lee et al. (2012)
can inherit the properties of variance bounding and geometric ergodicity from its intractable
Metropolis–Hastings (Metropolis et al., 1953; Hastings, 1970) counterpart. This allows the spec-
ification of a broad class of models for which we can be assured that this particular kernel will
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Approximate Bayesian computation 657

be geometrically ergodic. In addition, conditions ensuring inheritance of either property can be
met without knowledge of fθ , e.g., by using a symmetric proposal and a prior that is continuous
and everywhere positive and has exponential or heavier tails.

To assist in the interpretation of results and the quantitative example discussed later, we pro-
vide some background on the spectral properties of variance bounding and geometrically ergodic
Markov kernels. Both variance bounding and geometric ergodicity of a reversible Markov kernel
P are related to σ0(P), the spectrum of P considered as an operator on L2

0(π), the restriction of
L2(π) to zero-mean functions (see, e.g., Geyer & Mira, 2000; Mira, 2001). Variance bounding
is equivalent to sup σ0(P) < 1 (Roberts & Rosenthal, 2008, Theorem 14), and geometric ergod-
icity is equivalent to sup |σ0(P)|< 1 (Roberts & Rosenthal, 1997, Theorem 2.1; Kontoyiannis &
Meyn, 2012). The spectral gap, Gap(P)= 1− sup |σ0(P)|, of a geometrically ergodic Markov
kernel is closely related to its aforementioned geometric rate of convergence to π , with faster
rates associated with larger spectral gaps. In particular, its convergence in total variation satisfies

‖π(·)− Pm(θ0, ·)‖TV � Cρ(θ0)ρ
m (4)

for some 1>ρ � sup |σ0(P)| and some function Cρ :�→R+ (cf. Baxendale, 2005).

2. THE MARKOV KERNELS

In this section we describe the algorithmic specification of the π -invariant, reversible Markov
kernels under study. The algorithms specify how to sample from each kernel; in each, a candidate
ϑ is proposed according to a common proposal q(θ, ·) and is accepted or rejected, possibly along
with other auxiliary variables, using simulations from the likelihoods fϑ and fθ . We assume that
for all θ ∈�, q(θ, ·) and p are densities with respect to a common dominating measure, e.g., the
Lebesgue or counting measure. In the following, we define a ∧ b=min(a, b).

The first and simplest Markov kernel in this setting was proposed by Marjoram et al. (2003)
and is a special case of a pseudo-marginal kernel (Beaumont, 2003; Andrieu & Roberts, 2009).
Such kernels have been used in the context of approximate Bayesian computation for the estima-
tion of parameters in speciation models (Becquet & Przeworski, 2007; Chen et al., 2009; Li et al.,
2010; Kim et al., 2011) and as a methodological component within a sequential Monte Carlo
sampler (Drovandi & Pettitt, 2011; Del Moral et al., 2012). They evolve on�× YN and involve
sampling auxiliary variables z1:N ∼ f ⊗N

ϑ for a fixed N ∈N. We denote kernels of this type for
any N by P1,N , and describe their simulation in Algorithm 1. It is readily verified (Beaumont,
2003; Andrieu & Roberts, 2009) that P1,N is reversible with respect to

π̄(θ, x1:N )∝ p(θ)
N∏

j=1

fθ (x j )
1

N

N∑
j=1

w(x j ),

and we have π̄(θ)= ∫
π̄(θ, x1:N ) dx1:N = π(θ), i.e., the θ -marginal of π̄ is π(θ).

Algorithm 1. To sample from P1,N (θ, x1:N ; ·):
Step 1. Sample ϑ ∼ q(θ, ·) and z1:N ∼ f ⊗N

ϑ .

Step 2. With probability

1 ∧ p(ϑ)q(ϑ, θ)
∑N

j=1w(z j )

p(θ)q(θ, ϑ)
∑N

j=1w(x j )
,

output (ϑ, z1:N ); otherwise, output (θ, x1:N ).
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In Lee et al. (2012), two alternative kernels were proposed in this context, both of which
evolve on�. One of the kernels, denoted by P2,N and described in Algorithm 2, is an alternative
pseudo-marginal kernel which, in addition to sampling z1:N ∼ f ⊗N

ϑ , also samples auxiliary vari-
ables x1:N−1 ∼ f ⊗N−1

θ . Detailed balance can be verified directly upon interpreting
∑N

j=1w(z j )

and
∑N−1

j=1 w(x j ) as Bi{N , h(ϑ)} and Bi{N − 1, h(θ)} random variables, respectively. The other
kernel, denoted by P3 and described in Algorithm 3, also involves sampling according to fθ and
fϑ but does not sample a fixed number of auxiliary variables. This kernel also satisfies detailed
balance (Lee, 2012, Proposition 1).

Algorithm 2. To sample from P2,N (θ, ·):
Step 1. Sample ϑ ∼ q(θ, ·), x1:N−1 ∼ f ⊗N−1

θ and z1:N ∼ f ⊗N
ϑ .

Step 2. With probability

1 ∧ p(ϑ)q(ϑ, θ)
∑N

j=1w(z j )

p(θ)q(θ, ϑ)
{

1+∑N−1
j=1 w(x j )

} ,
output ϑ ; otherwise, output θ .

Algorithm 3. To sample from P3(θ, ·):
Step 1. Sample ϑ ∼ q(θ, ·).
Step 2. With probability

1−
{

1 ∧ p(ϑ)q(ϑ, θ)

p(θ)q(θ, ϑ)

}
,

stop and output θ .

Step 3. For i = 1, 2, . . . , until
∑i

j=1w(z j )+ w(x j )� 1, sample xi ∼ fθ and zi ∼ fϑ .
Set N← i .

Step 4. If w(zN )= 1, output ϑ ; otherwise, output θ .

Our first results in § 3 concern P1,N and P2,N . One would typically expect better performance
from these kernels for larger values of N (Andrieu & Vihola, 2014), and such behaviour can
often be demonstrated empirically. However, we establish that both of these kernels can never-
theless fail to be variance bounding regardless of the value of N when q proposes moves locally.
This suggests that increasing N may only bring improvement up to a certain point. On the other
hand, subsequent results for P3 show that by expending more computational effort in particular
places, one can successfully inherit variance bounding and/or geometric ergodicity from PMH,
the Metropolis–Hastings kernel with proposal q.

Because many of our positive results for P3 are in relation to PMH, we provide in Algorithm 4
the algorithmic specification for sampling from PMH. In the approximate Bayesian computa-
tion setting, use of PMH is ruled out by assumption since h cannot be computed. However, the
preceding kernels are all, in some sense, exact approximations of PMH.

Algorithm 4. To sample from PMH(θ, ·):
Step 1. Sample ϑ ∼ q(θ, ·).

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/101/3/655/1780956 by guest on 23 April 2024



Approximate Bayesian computation 659

Step 2. With probability

1 ∧ p(ϑ)h(ϑ)q(ϑ, θ)

p(θ)h(θ)q(θ, ϑ)
,

output ϑ ; otherwise, output θ .

The kernels share a similar structure, and P2,N , P3 and PMH can each be written as

P(θ, dϑ)= q(θ, dϑ)α(θ, ϑ)+
{

1−
∫
�

q(θ, dθ ′)α(θ, θ ′)
}
δθ (dϑ), (5)

where δx denotes the Dirac measure centred at x . Evidently, only the acceptance probability
α(θ, ϑ) differs for the three kernels. The kernel P1,N can be represented similarly, with modi-
fications to account for its evolution on the extended space �× YN . The representation (5) is
used extensively in our analysis, and for P2,N , P3 and PMH we have, respectively,

α2,N (θ, ϑ)=
∫

YN

∫
YN−1

[
1 ∧ c(ϑ, θ)

∑N
j=1w(z j )

c(θ, ϑ)
{

1+∑N−1
j=1 w(x j )

}
]

f ⊗N−1
θ (dx1:N−1) f ⊗N

ϑ (dz1:N ),

(6)

α3(θ, ϑ)=
{

1 ∧ c(ϑ, θ)

c(θ, ϑ)

}
h(ϑ)

h(θ)+ h(ϑ)− h(θ)h(ϑ)
, (7)

αMH(θ, ϑ)= 1 ∧ c(ϑ, θ)h(ϑ)

c(θ, ϑ)h(θ)
, (8)

where c(θ, ϑ)= p(θ)q(θ, ϑ) and (7) is obtained as in Lee (2012), for example.

3. THEORETICAL PROPERTIES

We assume that � is a metric space and

H =
∫
�

p(θ)h(θ) dθ

satisfies H ∈ (0,∞) so that π is well-defined. We allow p to be improper, i.e.,
∫
�

p(θ) dθ to
be infinite, but when p is proper we assume it is normalized so that

∫
�

p(θ) dθ = 1. Letting AC

denote the complement of a set A, we define the set of local proposals as

Q= {
q : for all δ > 0 there exists r ∈ (0,∞) such that for all θ ∈�, q(θ, BC

r,θ ) < δ
}
.

Membership of Q corresponds to tightness of {q(θ, ·)}θ∈�, when suitably centred, and this
definition encompasses a broad range of common choices in practice, e.g., random walk
proposals.

Let V and G denote the collections of reversible kernels that are, respectively, variance bound-
ing (Roberts & Rosenthal, 2008) and geometrically ergodic (see, e.g., Roberts & Rosenthal, 2004;
Meyn & Tweedie, 2009); so G ⊂ V . In our analysis, we make use of the following conditions.

Condition 1. The proposal q is a member of Q. In addition, π(BC
r,0) > 0 for all r > 0 but

limv→∞ supθ∈BC
v,0

h(θ)= 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/101/3/655/1780956 by guest on 23 April 2024
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Condition 2. The proposal q is a member of Q. In addition, for all K > 0, there exists an
MK ∈ [1,∞) such that for all (θ, ϑ) in the set{

(θ, ϑ) ∈�2 : ϑ ∈ BK ,θ , π(θ)q(θ, ϑ) ∧ π(ϑ)q(ϑ, θ) > 0
}
,

either h(ϑ)/h(θ) ∈ [M−1
K ,MK ] or c(ϑ, θ)/c(θ, ϑ) ∈ [M−1

K ,MK ].

Condition 1 ensures that the posterior has mass arbitrarily far from zero but that h(θ) gets
arbitrarily small as we move away from some compact set in�, while Condition 2 constrains the
interplay between the likelihood and the prior-proposal pair. For example, Condition 2 is satisfied
for symmetric q when p is continuous and everywhere positive with exponential or heavier tails;
alternatively, it is satisfied if the likelihood is continuous and everywhere positive and decays at
most exponentially fast. Conditions 1 and 2 are not mutually exclusive.

Remark 1. A global variant of Condition 2 can be defined where q need not be a member of
Q but there exists an M ∈ [1,∞) such that for all (θ, ϑ) in the set {(θ, ϑ) ∈�2 : π(θ)q(θ, ϑ) ∧
π(ϑ)q(ϑ, θ) > 0}, either h(ϑ)/h(θ) ∈ [M−1,M] or c(ϑ, θ)/c(θ, ϑ) ∈ [M−1,M]. Theorems 3
and 4, which hold under Condition 2, also hold under this variant, with simplified proofs that are
omitted here.

We first present a general theorem that supplements Theorem 5.1 of Roberts & Tweedie (1996)
for reversible kernels, indicating that lack of geometric ergodicity due to arbitrarily sticky states
coincides with lack of variance bounding. The proofs are given in the Appendix and the Supple-
mentary Material.

THEOREM 1. For any ν not concentrated at a single point and any reversible, irre-
ducible, ν-invariant Markov kernel P such that P(θ, {θ}) is a measurable function, if ν −
ess supθ P(θ, {θ})= 1, then P is not variance bounding.

Our first result concerning the kernels under study is negative, and indicates that performance
of P1,N and P2,N under Condition 1 can be poor, irrespective of the value of N .

THEOREM 2. Under Condition 1, P1,N /∈ V and P2,N /∈ V for all N ∈N.

Remark 2. Theorem 2 immediately implies that under Condition 1, P1,N /∈ G and P2,N /∈ G by
Theorem 1 of Roberts & Rosenthal (2008). The former implication is not covered by Theorem 8
of Andrieu & Roberts (2009) or Propositions 9 and 12 of Andrieu & Vihola (2014), because what
they call weights in this context, namely w(x)/h(θ), are bounded above by h(θ)−1 for π -almost
every θ ∈� and fθ -almost every x ∈Y but are not uniformly bounded in θ .

We emphasize that the choice of q is crucial in establishing Theorem 2. Since H > 0, if
q(θ, ϑ)= g(ϑ), for instance, and supθ p(θ)/g(θ) <∞, then by Theorem 2.1 of Mengersen &
Tweedie (1996) one has that P1,N is uniformly ergodic and hence belongs to G. Uniform ergodic-
ity, however, does little to motivate the use of an independent proposal in challenging scenarios,
particularly when � is high-dimensional.

Remark 3. We observe from (2) that when limv→∞ supθ∈BC
v,0

h(θ)= 0 holds for a given

ε = ε0, it must hold for all ε ∈ (0, ε0]. Furthermore, often this condition holds because
limv→∞ supθ∈BC

v,0
fθ (C)= 0 for any compact subset C of Y. In such cases, limv→∞
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supθ∈BC
v,0

h(θ)= 0 for any finite ε > 0, and Theorem 2 will correspondingly hold for any

finite ε > 0 such that π(BC
r,0) > 0 for all r > 0.

Our negative result above is not exclusive to the particular approximate Bayesian computation
set-up considered here. In the Appendix we provide supplementary results which indicate that
the theorem can be extended to the use of autoregressive proposals not covered by Q, approxi-
mations of the likelihood of a more general form than (1), and Markov kernels with an invariant
distribution in which ε is a nondegenerate auxiliary variable, cases which do arise in practice
(see, e.g., Bortot et al., 2007; Sisson & Fan, 2011). However, the following results do not apply
to these alternative settings, since P3 lacks an obvious analogue when the artificial likelihood is
not given by (1).

Our next three results concern P3, and demonstrate first that variance bounding of PMH is a
necessary condition for variance bounding of P3, and further that PMH is at least as good as P3
in terms of the asymptotic variance of estimates such as (3). More importantly, and in contrast
to P1,N and P2,N , P3 can systematically inherit variance bounding and geometric ergodicity
properties from PMH under Condition 2.

PROPOSITION 1. The Markov kernels P3 and PMH are ordered in the sense of Peskun (1973)
and Tierney (1998), so P3 ∈ V⇒ PMH ∈ V and var(PMH, ϕ)� var(P3, ϕ).

THEOREM 3. Under Condition 2, PMH ∈ V⇒ P3 ∈ V .

THEOREM 4. Under Condition 2, PMH ∈ G⇒ P3 ∈ G.

Remark 4. Proposition 1 and Theorems 3 and 4 are precise in the following sense: there exist
models for which P3 ∈ V \ G and PMH ∈ V \ G and there exist models for which P3 ∈ G and
PMH ∈ V \ G; that is, under Condition 2, PMH ∈ V � P3 ∈ G and P3 ∈ G � PMH ∈ G. These pos-
sibilities are illustrated in § 4·1.

Remark 5. While Condition 2 is only a sufficient condition, counterexamples can be con-
structed to show that some assumptions are necessary for Theorems 3 and 4 to hold. Condition 2
allows us to ensure that αMH(θ, ϑ) and α3(θ, ϑ) differ only in a controlled manner, for all θ and
enough ϑ , and hence that PMH and P3 are not too different. As an example of the possible dif-
ferences between PMH and P3 more generally, consider the case where p(θ)= p̃(θ)/ψ(θ) and
h(θ)= h̃(θ)ψ(θ) for some ψ :�→ (0, 1]. Then properties of PMH depend only on p̃ and h̃,
while those of P3 can additionally be dramatically altered by the choice of ψ .

Theorem 4 can be used to provide sufficient conditions for P3 ∈ G through PMH ∈ G and Con-
dition 2. The regular contour condition obtained in Theorem 4.3 of Jarner & Hansen (2000), for
example, implies the following corollary.

COROLLARY 1. Assume that (a) h decays super-exponentially and p has exponential or heav-
ier tails, or (b) p has super-exponential tails and h decays exponentially or slower. Suppose,
moreover, that π is continuous and everywhere positive, q is symmetric and satisfies q(θ, ϑ)� εq

whenever |θ − ϑ |� δq for some εq , δq > 0, and

lim sup
|θ |→∞

θ

|θ | ·
∇π(θ)
|∇π(θ)| < 0,

where · denotes the Euclidean scalar product. Then P3 ∈ G.
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Following Remark 1, an alternative condition, independent of the choice of q, which ensures
inheritance of variance bounding and geometric ergodicity of P3 from PMH is that infθ∈� h(θ) >
0, i.e., that h is bounded below away from zero. This condition will usually only hold when � is
compact. Under this condition, both P1,N and P2,N will also successfully inherit these properties;
the former has already been shown in Andrieu & Vihola (2014, Proposition 9), and for P2,N the
same type of argument can be used. This allows us to state the following corollary, which can be
verified by the arguments in Roberts & Rosenthal (2004, § 3.3).

COROLLARY 2. Let � be compact with q, p and h all continuous, such that inf θ,ϑ∈�
q(θ, ϑ) > 0 and inf θ∈� h(θ) > 0. Then P1,N , P2,N and P3 are all geometrically ergodic.

Remark 6. Under the conditions of Corollary 2, P1,N , P2,N and P3 are all uniformly ergodic
since the ratio of the acceptance probabilities, αMH(θ, ϑ)/αi (θ, ϑ), is bounded above by a con-
stant for i ∈ {1, 2, 3}. This suggests that in approximate Bayesian computation, a conservative
choice is to restrict inference to a compact set � in which h is bounded below.

The proofs of Theorems 3 and 4 can be extended to cover the case where P̃MH is a finite,
countable or continuous mixture of PMH kernels associated with a collection of proposals {qs}s∈S

and P̃3 is the corresponding mixture of P3 kernels. With a modification of Condition 2, the
following proposition is stated without proof, and could be used in conjunction with Theorem 3
of Fort et al. (2003), for instance.

Condition 3. Each proposal q is a member of Q. In addition, for all K > 0, there exists an
MK ∈ [1,∞) such that for all qt ∈ {qs}s∈S and (θ, ϑ) in the set{

(θ, ϑ) ∈�2 : ϑ ∈ BK ,θ , π(θ)qt (θ, ϑ) ∧ π(ϑ)qt (ϑ, θ) > 0
}
,

either h(ϑ)/h(θ) ∈ [M−1
K ,MK ] or ct (ϑ, θ)/ct (θ, ϑ) ∈ [M−1

K ,MK ], where ct (θ, ϑ)=
p(θ)qt (θ, ϑ).

PROPOSITION 2. Let P̃MH(θ, dϑ)= ∫
S μ(ds)P(s)MH(θ, dϑ), whereμ is a mixing distribution on

S and each P(s)MH is a π -invariant Metropolis–Hastings kernel with proposal qs. Let P̃3(θ, dϑ)=∫
S μ(ds)P(s)3 (θ, dϑ) be defined analogously. Then P̃3 ∈ V⇒ P̃MH ∈ V and var(P̃MH, ϕ)�

var(P̃3, ϕ), and under Condition 3, both P̃MH ∈ V⇒ P̃3 ∈ V and P̃MH ∈ G⇒ P̃3 ∈ G.

We also provide a general result that can justify using, for example, P3 as one component of
a mixture of reversible kernels, some of which may not be variance bounding or geometrically
ergodic.

THEOREM 5. Let K̃ =∑∞
i=1 ai Ki be a mixture of reversible Markov kernels with invariant

distribution π , where
∑∞

i=1 ai = 1 and ai � 0 for i ∈N. Suppose that K1 has the unique invariant
distribution π and a1 > 0. Then K1 ∈ V⇒ K̃ ∈ V and K1 ∈ G⇒ K̃ ∈ G.

While the sampling of a random number of auxiliary variables in the implementation of P3
appears to be helpful for the inheritance of qualitative properties from PMH, one concern is that
the computational effort associated with the kernel may be unbounded. Our final result indicates
that this is not the case whenever p is proper.

PROPOSITION 3. Let (Ni ) be the sequence of random variables associated with step 3 of
Algorithm 3 when one iterates P3, with N j = 0 if at iteration j the kernel outputs at step 2.
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Then, if
∫

p(θ) dθ = 1, H > 0 and P3 is irreducible,

n = lim
m→∞m−1

m∑
i=1

Ni � H−1 <∞.

When p is proper, H is a natural quantity. If nR is the expected number of proposals to obtain
a sample from π using the rejection sampler of Pritchard et al. (1999), we have nR = H−1;
and if we construct P1,N with the proposal q(θ, ϑ)= p(ϑ), then H places a lower bound on
its spectral gap. In fact, n can be arbitrarily smaller than nR , as we illustrate in § 4·1, and for a
realistic example in § 4·3 the average number of samples required per iteration was much smaller
than H−1.

One potential issue with all three of the kernels P1,N , P2,N and P3, when implemented using
local proposals, is that their performance for a fixed computational budget will be poor if the
Markov chain is initialized in a region of the state space with little posterior mass. This can be
circumvented by trying to identify regions of high posterior mass and initializing the chain at a
point in such a region. Finally, Remark 6 suggests that a conservative choice is to take � to be a
compact set in which h is bounded below; this would contain most of the interesting values of θ .

4. EXAMPLES

4·1. A posterior density with compact support

We begin with a simple example that clarifies the comments in Remark 4 and some of
those following Proposition 3. In particular, let θ ∈�=R+, p(θ)= I (0 � θ � a)/a and h(θ)=
bI (0 � θ � 1) for (a, b) ∈ [1,∞)× (0, 1], with π supported on [0, 1].

We have H−1 = a/b and n � b−1 for any q, so nR/n � a. Furthermore, even if p is improper,
n is finite. Regarding Remark 4, for any a � 1, consider the proposal q(θ, ϑ)= 2I (0 � θ �
1/2) I (1/2<ϑ � 1)+ 2I (1/2< θ � 1) I (0 � ϑ � 1/2). If b= 1, then P3 ∈ V \ G and PMH ∈
V \ G. However, if b ∈ (0, 1), then P3 ∈ G and PMH ∈ V \ G.

4·2. Geometric distribution

We consider the situation where θ ∈�=Z+, p(θ)= I (θ ∈N)(1− a)aθ−1 and h(θ)= bθ for
(a, b) ∈ (0, 1)2. The posterior π is a geometric distribution with success parameter 1− ab, and
geometric series manipulations shown in the Supplementary Material give the expected number
of proposals needed in the rejection sampler, nR = (1− ab)/{b(1− a)}. If q(θ, ϑ)= {I (ϑ =
θ − 1)+ I (ϑ = θ + 1)}/2, then

(1− ab)

2

{
(a + b)

b(1− a)(1+ b)
− 1

}
� n � (1− ab)

2

{
a + b

b(1− a)
− 1

}
, (9)

where n is as in Proposition 3, and so nR/n � 2/{a(1+ b)}, which grows without bound as
a→ 0. Regarding the propriety condition on p, we observe that nR→∞ and n→∞ as a→ 1
with b fixed.

To supplement the qualitative results on variance bounding and geometric ergodicity of the
kernels, we investigated a modification of this example with a finite number of states. More
specifically, we considered the case where the prior is truncated to the set {1, . . . , D} for some
D ∈N. In this context, we can calculate explicit transition probabilities and hence spectral gaps
1− |σ0(P)| and asymptotic variances var(P, ϕ) of (3) for P2,N , P3 and PMH. Figure 1(a) shows
the log spectral gaps for a range of values of D for each kernel and a = b= 0·5. The spectral gaps
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Fig. 1. Logarithmic plots of (a) the spectral gap, (b) var(P, ϕ1), and (c) var(P, ϕ2) against D for P2,1 (dot-dash),
P2,100 (dotted), P3 (dashed) and PMH (solid), with a = b= 0·5.

of P3 and PMH stabilize, whereas those of P2,N decrease exponentially fast in D, albeit with some
improvement for larger N . The spectral gaps obtained with (4) suggest that the convergence of
P2,N to π can be extremely slow for some θ0, even when D is relatively small. Indeed, in this
finite, discrete setting with reversible P , the bounds

1

2

{
max |σ0(P)|

}m � max
θ0
‖π(·)− Pm(θ0, ·)‖TV � 1

2

{
max |σ0(P)|

}m
{

1−minθ π(θ)

minθ π(θ)

}1/2

hold (Montenegro & Tetali, 2006, § 2 and Theorem 5.9), which clearly indicate that P2,N can
converge exceedingly slowly when P3 and PMH converge reasonably quickly. The value of n in
this case stabilized at 0·847, within the bounds of (9) and considerably smaller than 100.

In Fig. 1(b) and (c), log{var(P, ϕ)} is plotted against D for ϕ1(θ)= θ and ϕ2(θ)= (ab)−θ/2·1,
respectively, computed using the expression in Kemeny & Snell (1969, p. 84). The choice of ϕ2 is
motivated by the fact that when p is not truncated, ϕ(θ)= (ab)−θ/(2+δ) is in L2(π) if and only if
δ > 0. While var(P, ϕ1) is stable for all the kernels, var(P, ϕ2) increases rapidly with D for P2,1
and P2,100. Although var(P2,N , ϕ1) can be lower than var(P3, ϕ1), the former requires many more
simulations from the likelihood. Indeed, while the results we have obtained pertain to qualitative
properties of the Markov kernels, this example illustrates that P3 can significantly outperform
P2,100 for estimating even the more well-behaved π(ϕ1), when cost per iteration of each kernel
is taken into account. Additional figures in the Supplementary Material show similar graphs for
the case where a = 0·5 and b ∈ {0·1, 0·9}, and for these values of b the value of n stabilized at
4·77 and 0·502, respectively.

Figure 2 plots log{var(P, ϕ3,t )/π(ϕ3,t )} against t for ϕ3,t (θ)= I (θ � t) so that π(ϕ3,t ) is a
tail probability. The division by π(ϕ3,t ) makes this an appropriately scaled relative asymptotic
variance, since one needs 1/π(ϕ3,t ) perfect samples from π in expectation to get a single sample
in the set {θ : θ � t}. While PMH and P3 have constant log{var(P, ϕ3,t )/π(ϕ3,t )} as t increases,
P2,1 and P2,100 do not, a result of their inability to estimate tail probabilities accurately. In various
applications, approximate Bayesian computation could be used to infer such quantities, but our
results here indicate that P1,N and P2,N may not be appropriate for this purpose.

The bounds in (9) imply that n will grow as a→ 1 with b fixed, and one might be con-
cerned that P3 could consequently be less computationally advantageous in comparison with
P2,N . We calculated asymptotic variances associated with the kernels for b= 0·5 and a ∈
{0·9, 0·99, 0·999}, and the corresponding values of n for P3 were approximately 5, 50 and
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Fig. 2. Plots of log{var(P, ϕ3,t )/π(ϕ3,t )} against t for P = P2,1 (dot-dash), P = P2,100 (dotted), P = P3 (dashed)
and P = PMH (solid), with a = 0·5 and (a) b= 0·1, (b) b= 0·5, (c) b= 0·9.

500. Graphs are shown in the Supplementary Material. To take into account the cost of the ker-
nels, we can compare Nvar(P2,N , ϕ1) with n var(P3, ϕ1), and for these values of a we have
var(P2,1, ϕ1)≈ 100 var(P2,100, ϕ1), although P2,100 can more feasibly be implemented in paral-
lel on many-core devices such as graphics processing units (see, e.g., Lee et al., 2010). On the
other hand, var(P2,1, ϕ1)/{n var(P3, ϕ1)} is about 75, 5000 and well over 60 000 for a = 0·9, 0·99
and 0·999, respectively, indicating that the relative performance of P3 increases rapidly as a→ 1.

4·3. Stochastic Lotka–Volterra model

We now turn to stochastic kinetic models for which the posterior does not take a simple form
and exhibits strong correlations between components of θ . Such models are used, for example,
in systems biology, where Bayesian inference has been investigated by Wilkinson (2006) and
Boys et al. (2008). We consider a simple member of this class of models, the Lotka–Volterra
predator-prey model (Lotka, 1925; Volterra, 1926), which was also considered as an example for
approximate Bayesian computation in Toni et al. (2009) and Fearnhead & Prangle (2012).

In this setting, X1:2(t) is a bivariate, integer-valued pure jump Markov process with X1:2(0)=
(50, 100). For small �t , we have

pr{X1:2(t +�t)= z1:2 | X1:2(t)= x1:2}

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ1x1�t + o(�t), z1:2 = (x1 + 1, x2),

θ2x1x2�t + o(�t), z1:2 = (x1 − 1, x2 + 1),

θ3x2�t + o(�t), z1:2 = (x1, x2 − 1),

1−�t (θ1x1 + θ2x1x2 + θ3x2)+ o(�t), z1:2 = x1:2,

o(�t) otherwise,

where the first three cases correspond to prey birth, prey consumption and predator death. The-
ory and methods relating to simulation of this type of time-homogeneous, pure jump Markov
process and its historical uses in statistics can be traced through Feller (1940), Doob (1945) and
Kendall (1949, 1950), and the method was rediscovered by Gillespie (1977) in the context of
stochastic kinetic models. These articles develop a straightforward way to simulate the full pro-
cess X1:2(t), t ∈ [0, 10], as the interjump times are exponential random variables, although more
sophisticated approaches are possible (see, e.g., Wilkinson, 2006, Ch. 8).

The data were simulated with θ = (1, 0·005, 0·6) (Wilkinson, 2006, p. 152). Our observations
are both partial and discrete, with y = {88, 165, 274, 268, 114, 46, 32, 36, 53, 92} being the
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Fig. 3. Estimates of the posterior mean of θ3 by iteration using the kernels (a) P1,1, (b) P1,15, (c) P2,15, and (d) P3. In
each panel, the three horizontal lines represent the estimate obtained using the rejection sampler, with two estimated

standard deviations added and subtracted.
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Fig. 4. Estimates of π(θ3 � 1·79) by iteration using the kernels (a) P1,1, (b) P1,15, (c) P2,15, and (d) P3. In each
panel, the three horizontal lines represent the estimate obtained using the rejection sampler, with two estimated

standard deviations added and subtracted.

simulated values of X1 at times {1, 2, . . . , 10}; for approximate Bayesian computation we use
a log transformation of X1(t) and y(t) with ε = 1, i.e.,

Bε,y =
{

X1(t) : log{X1(i)} − log{y(i)}� ε, i ∈ {1, . . . , 10}}.
We first model θ ∈�= [0,∞)3 with p(θ)= 100 exp(−θ1 − 100 θ2 − θ3) and take q(θ, ϑ)=

N (ϑ; θ,�) where � = diag(0·25, 0·0025, 0·25). The choice of independent exponential priors
on θ is motivated by Condition 2. Estimated marginal posterior densities, obtained using 106

samples from π with a rejection sampler, can be found in the Supplementary Material. The pos-
terior of θ1 is tighter than that of θ3, and the samples indicate strong positive correlation between
θ2 and θ3. In this setting, P3 for 5× 106 iterations gave an average value of 15 for n, and we
also ran kernels P1,1 = P2,1 for 5× 107 iterations as well as P1,15 and P2,15 both for 5× 106

iterations. All the kernels gave density estimates visibly indistinguishable from those in Fig. S5
of the Supplementary Material, but inspection of their partial sums by iteration reveals important
differences. For each chain, we show in Fig. 3 estimates of the posterior mean of θ3 and in Fig. 4
estimates of the probability that θ3 � 1·79, accompanied by lines corresponding to the estimate
obtained using the samples from the rejection sampler. The choice of 1·79 corresponds to an
estimate of the 90th percentile using these latter samples. It seems that P3 accurately estimates
the correct value, with the uncertainty of the estimate being correlated with perturbations of the
partial sum. However, the other kernels miss the value of interest by some amount, and particu-
larly in the case of P1,1, the perturbations of the partial sum over time are small, which may lead
practitioners to believe mistakenly that the estimate has converged.
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We performed a second analysis using a slightly different prior, with p(θ)= 0·01 exp(−θ1 −
0·01 θ2 − θ3), such that differences in the kernels are accentuated. Here, only the independent
prior for θ2 has changed to become less informative. In this case, a rejection sampler cannot prac-
tically be used to verify results, as the expected number of proposals required to obtain one sample
by rejection is around 4·5× 105. The average value of n for P3, however, was 13. Although not
shown here, marginal posterior density estimates for the parameters using each kernel are close
to those in Fig. S5 of the Supplementary Material, but the estimates corresponding to P1,1 exhibit
characteristic bumps in their tails. As above, we can inspect each chain’s corresponding partial
sums by iteration to uncover important differences. Figures S6 and S7 in the Supplementary
Material show, respectively, estimates of the posterior mean of θ2 and the posterior probability
that θ3 � 2 for each chain, and the latter is illustrative of the inability of P1 and P2 to produce
chains without long tail excursions.

In practical applications such as this, it may not be possible to determine easily whether or
not PMH is variance bounding or geometrically ergodic. However, Theorems 3 and 4 do establish
that if PMH has either of these properties, then P3 will inherit them from PMH. In practice, it is
not unusual for the conditions of Corollary 1 to hold, and that might be the case here. Similarly,
it is also quite common for Condition 1 to hold, and so one might expect that P1 and P2 are not
variance bounding here.

5. DISCUSSION

Our analysis shows that P3 may be geometrically ergodic and/or variance bounding in a wide
variety of situations where the kernels P1,N and P2,N are not. In practice, Condition 2 can be ver-
ified and used in prior and proposal choice to ensure that P3 systematically inherits these proper-
ties from PMH. Condition 2 is not necessary, but weaker conditions are likely to be complicated.

Theorems 2 and 3 together with Proposition 3, whose assumptions are not mutually exclusive,
allow us to conclude that the behaviour of P3 is characteristically different from that of P1,N and
P2,N in some settings. A large expected number of simulations from fθ and fϑ using P3 could be
viewed as analogous to being stuck for many iterations using P1,N or P2,N . However, while the
expected number of simulations and the asymptotic variance of (3) for any ϕ ∈ L2(π) are finite
when using P3 under the conditions of Theorem 3, there exist ϕ ∈ L2(π) for which a central limit
theorem does not hold for (3) when using P1,N or P2,N under the conditions of Theorem 2.

Variance bounding and geometric ergodicity are likely to coincide in most applications of inter-
est, as Metropolis–Hastings kernels that are variance bounding but not geometrically ergodic
exhibit periodic behaviour rarely encountered in statistical inference. Bounds on the second
largest eigenvalue and/or the spectral gap of P3 in relation to properties of PMH could be obtained
through Cheeger-like inequalities using conductance arguments as in the proofs of Theorems 3
and 4, although these may be quite loose in some situations (see, e.g., Diaconis & Stroock, 1991)
and we have not pursued them here. Finally, Roberts & Rosenthal (2011) have demonstrated
that some simple Markov chains that are not geometrically ergodic can converge extremely
slowly and that properties of such algorithms can be very sensitive to even slight parameter
changes.

The theoretical results obtained in § 3 and the examples in § 4 provide some understanding of
the relative qualitative merits of P3 over P1,N and P2,N . However, the results do not prove that P3
should necessarily be uniformly preferred over P2,N , although the examples do suggest that P3
may have better asymptotic variance properties when taking the cost of simulations into account
in a variety of scenarios. In addition, Theorem 5 can be used to justify the mixture of P3 with
alternative reversible kernels such as P2,N , if desired.
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APPENDIX

Many of our proofs make use of the relationship between conductance, the spectrum of a Markov kernel,
and variance bounding for reversible Markov kernels P . In particular, the conductance being positive,
κ > 0, is equivalent to sup S(P) < 1 (Lawler & Sokal, 1988, Theorem 2.1), which, as stated earlier, is
equivalent to variance bounding. The conductance κ for aπ -invariant transition kernel P on� is defined as

κ = inf
A:0<π(A)�1/2

κ(A), κ(A)= π(A)−1
∫

A
P(θ, AC)π(dθ)=

∫
�

P(θ, AC)πA(dθ),

where πA(dθ)= π(dθ)I (θ ∈ A)/π(A).
Finally, we make use of the fact that if q ∈Q, we can define the function

rq(δ)= inf
{

r : for all θ ∈�, q(θ, BC
r,θ ) < δ

}
.

Proof of Theorem 1. If ν − ess supθ P(θ, {θ})= 1 and P(θ, {θ}) is measurable, then the set Aτ = {θ ∈
� : P(θ, {θ})� 1− τ } is measurable and ν(Aτ ) > 0 for every τ > 0. Moreover, a0 = limτ↘0 ν(Aτ ) exists,
since Aτ2 ⊂ Aτ1 for τ2 < τ1. Now, assume a0 > 0 and define A0 = {θ ∈� : P(θ, {θ})= 1} =⋂

n Aτn , where
τn↘ 0. By continuity from above, ν(A0)= a0 > 0, and since ν is not concentrated at a single point, P is
reducible, which is a contradiction. Hence a0 = 0. Consequently, by taking τn↘ 0 with τ1 small enough,
we have ν(Aτn ) < 1/2 for every n; and since

κ � lim
n
κ(Aτn )= lim

n

∫
Aτn

P(θ, AC
τn
)νAτn(dθ)� lim

n

∫
Aτn

P(θ, {θ}C)νAτn(dθ)= lim
n
τn = 0,

we have that P /∈ V , which proves the theorem. �

Proof of Theorem 2. We prove the result for P2,N . The proof for P1,N is essentially identical, with
minor adjustments for the extended state space, and so we omit it. By Theorem 1, it suffices to show that
π − ess supθ P2,N (θ, {θ})= 1, i.e., for all τ > 0, there exists A⊆� with π(A) > 0 such that for all θ ∈ A,
P2,N (θ, {θ}C)� τ .

From Condition 1, q ∈Q. Given τ > 0, let r = rq(τ/2), v= inf{v : supθ∈Bc
v (0)

h(θ) < 1− (1− τ/2)1/N }
and A= BC

v+r,0. From Condition 1, π(A) > 0, and by (5) and (6) we have that for all θ ∈ A,

P2,N (θ, {θ}C)=
∫
{θ}C

∫
YN

∫
YN−1

[
1 ∧ c(ϑ, θ)

∑N
j=1w(z j )

c(θ, ϑ)
{

1+∑N−1
j=1 w(x j )

}
]

f ⊗N−1
θ (dx1:N−1) f ⊗N

ϑ (dz1:N )q(θ, dϑ)

� sup
θ∈�

q
(
θ, BC

r,θ

)+ ∫
Br,θ

∫
YN

I

{
N∑

i=1

w(zi )� 1

}
f ⊗N
ϑ (dz1:N )q(θ, dϑ)

� τ

2
+

∫
Br,θ

⎡
⎣1−

{
1− sup

ϑ∈Br,θ

h(ϑ)

}N
⎤
⎦ q(θ, dϑ)� τ,

as desired. �
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The following two lemmas are pivotal in the proofs of Proposition 1 and Theorems 3 and 4, and make
extensive use of (5), (7) and (8). Their proofs can be found in the Supplementary Material.

LEMMA A1. For any θ ∈�, P3(θ, {θ})� PMH(θ, {θ}).
LEMMA A2. Assume Condition 2. For π -almost all θ and any A⊆� such that θ ∈ A and r > 0,

PMH(θ, AC)� sup
θ

q(θ, BC
r,θ )+ (1+ Mr )P3(θ, AC),

where Mr is as defined in Condition 2.

Proof of Theorem 3. We prove the result under Condition 2. Let κMH and κ3 be the conductances of PMH

and P3, respectively, and let A be a measurable set with π(A) > 0. Since q ∈Q, we let R = rq(κMH/2) and
take MR as in Condition 2. Then, by Lemma A2,

κMH(A)=
∫
�

PMH(θ, AC)πA(dθ)�
κMH

2
+ (1+ MR)

∫
�

P3(θ, AC)πA(dθ)

= κMH

2
+ (1+ MR)κ3(A).

Since A is arbitrary, we conclude that κMH � 2(1+ MR)κ3, and so κMH > 0⇒ κ3 > 0. �
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