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S

This paper studies properties of ordinary and generalised least squares estimators in a simple
linear regression with stationary autocorrelated errors. Explicit expressions for the variances of the
regression parameter estimators are derived for some common time series autocorrelation structures,
including a first-order autoregression and general moving averages. Applications of the results
include confidence intervals and an example where the variance of the trend slope estimator does
not increase with increasing autocorrelation.
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1. I

This paper studies the ordinary and generalised least squares parameter estimators in the simple
linear regression model

X
t
=m+at+e

t
(1·1)

when the errors {e
t
} have mean zero and are stationary in time t with autocovariance

c(h)=cov(e
t
, e
t+h

) at lag h. The model in (1·1) has a fundamental role in many statistical analyses
(Grenander, 1954; Harvey & Phillips, 1979; Zinde-Walsh & Galbraith, 1991; Choudhury et al.,
1999). There is little loss of generality in considering (1·1) over the more general regression
X
i
=m+at

i
+e
i
, and hence we take t

i
= i from now on.

Ordinary least squares estimators, which have minimal variance when the {e
t
} are uncorrelated,

are frequently computed instead of generalised, weighted, least squares estimators when {e
t
} are

in truth autocorrelated. Grenander (1954) shows that ordinary and generalised least squares
estimators have the same asymptotic efficiency under very general conditions on a stationary {e

t
}.

In short, ordinary least squares estimators are attractive in reasonable generality. This paper derives
explicit forms for the variances of the ordinary least squares estimators under some autocorrelation
structures commonly encountered in time series and draws some conclusions from these forms.
The ordinary least squares estimators of the regression parameters in (1·1), denoted by m@OLS and

a@OLS , are

a@OLS=
Wn
t=1

(t−t: ) (X
t
−X9 )

Wn
t=1

(t−t:)2
, m@OLS=X9 −a@OLSt: , (1·2)

where t:=(n+1)/2 and X9=n−1 Wn
t=1

X
t
are the time and observation averages, and Wn

t=1
(t−t:)2=

n(n+1)(n−1)/12. Alternatively,

Am@OLSa@OLSB= (D∞
n
D
n
)−1D∞

n
X(n) , (1·3)
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where X(n)= (X
1
, . . . , X

n
)∞ and D

n
= (1(n) , i(n) ) is the design matrix. Here, 1(n)= (1, . . . , 1)∞ and

i(n)= (1, 2, . . . , n)∞. The estimators m@OLS and a@OLS are unbiased for any zero-mean {et}; however,
ordinary least squares estimators will not have the smallest variances amongst all unbiased
estimators unless {e

t
} are uncorrelated and with a constant variance.

The minimum variance unbiased estimators of m and a that are linear combinations of
X
1
, . . . , X

n
, denoted by m@GLS and a@GLS , are the generalised least squares estimators

Am@GLSa@GLS
B= (D∞

n
C−1
n

D
n
)−1D∞

n
C−1
n

X(n) . (1·4)

In (1·4), C
n
denotes the covariance matrix of X(n) which is tacitly assumed invertible for each n�1.

In general, generalised least squares estimators do not admit a simple explicit form akin to (1·2).
The generalised least squares estimators are also unbiased for any zero mean {e

t
} and have a

smaller variance than the ordinary least squares estimators: var(m@GLS )∏var(m@OLS ) and var(a@GLS )∏
var(a@OLS ). The ordinary and generalised estimators are equal if and only if the columns of Dn span
the same linear subspace as the columns of C

n
D
n
(Bloomfield & Watson, 1975).

2. V   

We have that

varAm@OLSa@OLSB= (D∞
n
D
n
)−1 (D∞

n
C
n
D
n
) (D∞
n
D
n
)−1 , (2·1)

varAm@GLSa@GLS
B= (D∞

n
C−1
n

D
n
)−1 . (2·2)

There is a wealth of literature comparing the above variances, providing several interesting bounds;
see for example Grenander (1954), Gurland (1954), Watson (1955, 1967), Zyskind (1967), Knott
(1975) and Chipman (1979) for a historical sample.
Further calculations give

var(a@OLS )=
c(0)+2 Wn−1

j=1
w
j
c( j )

Wn
t=1

(t−t: )2
, (2·3)

var(m@OLS )=
1

nA4A2n+1

2n−2B c(0)+2 ∑
n−1

j=1
C1− j

n
+q3(n+1)

n−1 rwjD c( j )B , (2·4)

where, for j=0, . . . , n−1, the weights {w
j
} are

w
j
=
Wn−j
t=1

(t−t: ) (t+ j−t: )
Wn
t=1

(t−t: )2

=
(1− j/n)(1−2j/n−2j2/n2−1/n2 )

(1+1/n)(1−1/n)
. (2·5)

In addition,

cov(m@OLS , a@OLS )=
−t:

Wn
t=1

(t−t: )2qc(0)+2 ∑
n−1

j=1
w
j
c( j )r . (2·6)

We note here some properties of {w
j
} for later use. The Cauchy–Schwarz inequality provides

|w
j
|∏w0=1 for each j. Taking a limit in (2·5) shows that lim

n�2
w
j
=1 for each fixed j. Finally,

it is easy to verify algebraically that Wn−1
j=1

w
j
=−1

2
for all n�2.
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3. A

Example 1. Suppose that {e
t
} is a qth-order moving average, such that

e
t
=Z
t
+h
1
Z
t−1
+ . . .+h

q
Z
t−q

, (3·1)

where {Z
t
} is zero-mean white noise with variance s2 . Then c(h)=s2 Wq

i=h
h
i
h
i−h
for h�0, where

the convention h0=1 is adopted. Note in particular that c(h)=0 when |h |>q. Using this covariance
structure in (2·3) gives

var (a@OLS )=s2q ∑q
i=0
h2
i
+ ∑
q

j=1

2(n− j )

n(n2−1)
(n2−2jn−2j2−1) ∑

q

i=j
h
i
h
i−jrN∑n

t=1
(t−t: )2 . (3·2)

An analogous expression for var(m@OLS ) can be obtained by combining the moving-average
autocovariance structure with (2·4); we omit the algebraic details.

Example 2. Suppose that {e
t
} is a causal first-order autoregression satisfying

e
t
=we

t−1
+Z
t
, (3·3)

where |w |<1 and {Z
t
} is zero-mean white noise with variance s2 . Then c(h)=s2wh (1−w2 )−1 for

h�0, and (2·3) and (2·4) give the forms

var(a@OLS )=
12s2

n(n2−1)(1−w)4 (1−w2 )A1+ ∑n+3
i=1
b
i
wiB , (3·4)

var (m@OLS )=
2s2

n(1−w)4 (1−w2 )A2n+1

n−1
+ ∑
n+3

i=1
j
i
wiB , (3·5)

where the only nonzero coefficients are

b
1
=−2(n+3)n−1 , b

2
=12(n2+1)n−1 (n2−1)−1 , b

3
=2(n−3)n−1 , b

4
=−1,

b
n+1
=−6(n+1)n−1 (n−1)−1 , b

n+2
=12n−1 , b

n+3
=−6(n−1)n−1 (n+1)−1 ,

and

j
1
=−4(n+1)(n+2)n−1 (n−1)−1 , j

2
=4(5n2−n+5)n−1 (n−1)−2 ,

j
3
=4(n2−2n−2)n−1 (n−1)−1 , j

4
=−(2n+1)(n−1)−1 ,

j
n+1
=−4(n+2)(2n+1)n−1 (n−1)−2 , j

n+2
=4(4n+5)n−1 (n−1)−1 , j

n+3
=−8n−1 .

Example 3 (Confidence intervals). For known autocovariances in a Gaussian series, confidence
intervals take the form m@OLS±z

a/2
var(m@OLS )D and a@OLS±z

a/2
var (a@OLS )D , where the variances are

computed from (2·3) and (2·4), and where z
a/2
is the (1−a/2)th quantile of the standard normal

distribution. We focus on a here; confidence intervals for m are analogously developed.
When autocovariances of {e

t
} are unknown, one can substitute estimates of c ( . ) into (2·3) and

use the interval a@OLS±t
a/2
var (a@OLS )D , where ta/2 denotes the (1−a/2)th quantile of the t distribution.

The appropriate degrees of freedom for the t distribution, however, is an unresolved issue. In an
unpublished National Center for Atmospheric Research technical report, D. Nychka, R. Buchberger,
T. M. L. Wigley, B. D. Santer, K. E. Taylor and R. H. Jones consider this problem with the first-
order autoregressive {e

t
} in Example 2 with unknown wµ (−1, 1) and s2 . For inferences involving

a, they suggest replacing the customary n−2 degrees of freedom with the equivalent degrees of
freedom n

e
−2, where n

e
is

n
e
=nq1−r@ (1)−0·68n−D

1+r@ (1)+0·68n−Dr (3·6)
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and r@ (1)=Wn−1
t=1

R
t
R
t+1

(Wn
t=1

R2
t
)−1=w@NND is the nonnegative definite lag-one sample auto-

correlation of the residual series {R
t
}={X

t
−m@OLS−a@OLSt}. The justification for the general form

of (3·6) stems from an asymptotic correction involving (2·3): use c(h)=s2wh (1−w2 )−1 for h�0,
the dominated convergence theorem, and note that |w

j
|∏1 for all j, and w

j
� 1 as n�2 for each

fixed j to obtain

lim
n�2

c(0)/Wn
t=1

(t−t: )2
c(0)(1+2 Wn−1

j=1
w
j
wj )/Wn

t=1
(t−t: )2

=
1−w
1+w

. (3·7)

In the left-hand side of (3·7), the numerator is the variance of a@OLS when the {et} are uncorrelated
with variance c(0) and the denominator is the variance of a@OLS computed from (2·3) under the
(1) model. Hence, we interpret n

e
as the number of independent observations with variance c(0).

In their report, Nychka et al. justify the 0·68n−D term in (3·6) entirely through simulation, stating
that the term helps to correct for bias in the sampling distribution of w@NND , and that likelihood
methods do not significantly improve upon least squares methods.
For a fixed n, the explicit variances in § 2 can be used to improve accuracy. From (3·7), a better

estimate of n
e
for a finite sample size n is n

e
=n(1+2 Wn−1

j=1
w
j
wj )−1 . Using this in (2·5) and

performing a tedious algebraic computation gives

n
e
=nq1+ 2w

n(n+1)(n−1)(1−w)4A ∑n+2
i=0
c
i
wiBr−1 , (3·8)

where the only nonzero c
i
’s in (3·8) are c0= (n−3)(n2−1), c1=−3{n(n2−1)−2(n2+1)},

c2=3(n+1)(n−1)2, c3=−n(n2−1), c
n
=−3(n+1)2 , c

n+1=6(n2−1) and c
n+2=−3(n−1)2.

As noted in the Nychka et al. report, biases in the estimators of w and s2 must be taken
into account with small n. Tjøstheim & Paulsen (1983) suggest using the bias correction
w@BC=r@ (1)+n−1{1+4r@ (1)}, rounded to 1 or −1 in cases where this estimate falls outside the
range |w|<1. Fuller (1996, Ch. 6) discusses bias correction of general autocorrelation estimators.
A simulation was conducted to compare further the above confidence intervals. Table 1 compares
the width of the Nychka et al. interval

a@OLS±t
a/2qWnt=1 R2t /(ne−2)

Wn
t=1

(t−t: )2 rD (3·9)

with n
e
as in (3·6) to a t interval with n

e
as in (3·8) and the standard error

var(a@OLS )D=qA s@2BC1−w@2BCB 1+2 Wn−1
j=1

w
j
w@ jBC

Wn
t=1

(t−t: )2 rD , (3·10)

where s@2BC= (n−3)−1 Wn
t=2

(R
t
−w@BCRt−1 )2 is a biased-corrected estimator of s2. Table 1 compares

average confidence interval lengths of the two methods with empirical coverage probabilities in
parentheses. To be specific, for the Nychka et al. method, the confidence interval length is

2t
a/2qWnt=1 R2t /(ne−2)

Wn
t=1

(t−t: )2 rD . (3·11)

A 95% level of confidence was used; the {e
t
} were simulated as Gaussian. One hundred thousand

entries were generated for each table entry, so that uncertainty due to simulation is minimal. The
parameters chosen for the simulation were m=0, a=1 and s2=1, but sampling properties are
mathematically invariant over the choice of m and a.
Table 1 shows that the average length of the ‘moment-corrected’ interval is smaller than that for
the Nychka et al. interval, dramatically so when n is small and w is close to unity. The Nychka
et al. interval performs poorly in some of the simulations because of the large frequency at which
(3·6) returns the physical impossibility n

e
<2. In such cases, the simulations set n

e
=3, making the
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Table 1: Example 3. Simulation comparison of
confidence interval lengths, with empirical coverage

probabilities in parentheses

Length based Length based
n w on (3·8) and (3·10) on (3·9)

25 0·00 0·114 (0·930) 0·134 (0·968)
25 0·25 0·150 (0·920) 0·187 (0·950)
25 0·50 0·225 (0·901) 0·594 (0·937)
25 0·75 0·385 (0·857) 5·423 (0·912)

100 0·00 0·0136 (0·945) 0·0148 (0·963)
100 0·25 0·0182 (0·943) 0·0195 (0·957)
100 0·75 0·0274 (0·940) 0·0301 (0·956)
100 0·00 0·0560 (0·930) 0·0726 (0·958)

500 0·00 0·00121 (0·950) 0·00126 (0·958)
500 0·25 0·00162 (0·948) 0·00167 (0·955)
500 0·50 0·00243 (0·949) 0·00253 (0·957)
500 0·75 0·00488 (0·947) 0·00523 (0·960)

Nychka et al. interval seem better than it really is. Equivalent degrees of freedom computed in
(3·8) do not suffer from such structural defects. Whereas the empirical probability of coverage of
the (3·9)-based interval is typically slightly closer to its target value of 95%, both methods return
reasonable coverages that are more accurate with increasing n and smaller w.

We now consider monotonicity of var(a@OLS ) in autocovariance. Differentiating the expression
derived for var(a@OLS ) in (2·3) with respect to c(h) for a fixed h�1 gives

∂ var(a@OLS )
∂c(h)

=2w
hq ∑n
t=1

(t−t: )2r−1 .
Hence, var(a@OLS ) increases with increasing c(h) when w

h
>0. In particular var(a@OLS ) for the

qth-order moving average in Example 3 increases with increasing c(h), for 1∏h∏q, whenever
n2−2qn−2q2−1�0, which holds whenever n�3q. As for more general monotonicity, we offer
the following perhaps surprising example.

Example 4. In general, var(a@OLS ) may actually decrease with increasing autocorrelation in {et}.
To see this, consider the two autocovariances c(1) (h)=I

{0}
(h) and c(2) (h)= (1−r2 )+r2I

{0}
(h), where

I
A
( . ) denotes the indicator function of the set A and rµ (0, 1). Here, c(1) is a white noise auto-
covariance under which ordinary least squares estimators have minimal variance, and c(2) is the
autocovariance of the stationary series {e

t
}, where

e
t
= (1−r2 )DS+rW

t
, (3·12)

and S is a zero-mean unit-variance random shift that is assumed uncorrelated with the zero-mean
unit-variance white noise {W

t
}. Note that c(2)=c(1) at the extremum r=1. We have scaled both

series to make c(1) (0)=c(2) (0)=1 for a common basis of comparison. Note that c(2) (h)�/ 0 as
h�2, nor is c(2) absolutely summable over all positive lags.
Applying (2·3) to c(2) and using Wn−1

j=1
w
j
=−1

2
gives

var(a@OLS )=
r2

Wn
t=1

(t−t: )2
, (3·13)

and hence var(a@OLS )<{Wn
t=1

(t−t: )2}−1 , the bound being the variance of the ordinary least squares
trend estimate with errors having autocovariances c(1) . As c(1) (h)∏c(2) (h) for all lags h, we have an
example where larger autocorrelations lead to a smaller ordinary least squares variance.
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Mathematically, the paradox is explained as follows. The stationary errors {e
t
} in (3·12) give a

constant a@OLS for each r: model (3·12) merely shifts means, albeit randomly, and rescales the
noises in (1·1) and a@OLS is invariant over mean shifts in {Xt} and white noise rescalings. How-
ever, the autocovariance of {e

t
} at each fixed lag h�1 is decreasing in r. At the extremum

r=1, {e
t
} is white noise with a unit variance. The non-monotonicity is not rooted in ordinary

least squares methods as a@OLS=a@GLS .
More generally, the above autocovariance structure arises in split-plot designs (Christensen,
2002, Ch. 11). Consider the following split-plot regression with a homogeneous time trend:

X
i,t
=m+at+e

i,t
. (3·14)

Here, the indices 1∏ i∏m and 1∏t∏n correspond to whole-plot and sub-plot factors, respectively.
Consider noise models e

i,t
= (1−r2 )DS

i
+rW

i,t
where S

i
is a random whole-plot effect, independent

for each i, with zero mean and unit variance. The {W
i,t
} for each fixed i have zero mean and unit

variance; across varying i, they are taken as independent and also independent of {S
i
}m
i=1

.
Equation (2·3) gives var(a@OLS )=r2{m2 W

n
t=1

(t−t: )2}−1 , which is increasing in r. At the extremum
r=1, the {e

i,t
} are unit-variance white noise.
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