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SUMMARY

There is growing interest in analysing high-dimensional count data, which often exhibit quasi-
sparsity corresponding to an overabundance of zeros and small nonzero counts. Existing methods
for analysing multivariate count data via Poisson or negative binomial log-linear hierarchical
models with zero-inflation cannot flexibly adapt to quasi-sparse settings. We develop a new class
of continuous local-global shrinkage priors tailored to quasi-sparse counts. Theoretical properties
are assessed, including flexible posterior concentration and stronger control of false discoveries
in multiple testing. Simulation studies demonstrate excellent small-sample properties relative to
competing methods. We use the method to detect rare mutational hotspots in exome sequencing
data and to identify North American cities most impacted by terrorism.

Some key words: Count data; High-dimensional data; Local-global shrinkage; Rare variant; Shrinkage prior; Zero-
inflation.

1. INTRODUCTION

In this article we consider the modelling of high-dimensional quasi-sparse count data y =
(y1, . . . , yn)

T having an excess of values near zero. In many applications, the rates of event occur-
rence are very small at a majority of locations, with substantially higher rates at a subset of
locations. For example, yi may represent the number of mutations observed at location i in the
genome or the number of terrorist activities in city i. There is a rich literature on the modelling
of count data focused on accommodating overdispersion relative to the Poisson distribution and
zero-inflation, but such models are insufficiently flexible for quasi-sparse data with an abun-
dance of very small nonzero counts. We propose a novel shrinkage prior for the rate parameters,
which simultaneously accommodates quasi-sparse and heavy-tailed signals θ , while maintaining
computational tractability and theoretical guarantees. The proposed shrinkage prior is built upon
the Gauss hypergeometric distribution proposed by Armero & Bayarri (1994) for modelling the
traffic intensity of an M/M/1 queue in equilibrium.

For simplicity, we focus on the model yi ∼ Po(θi), independently for i = 1, . . . , n, with
θ = (θ1, . . . , θn)

T. However, our proposed approach can be used directly for more elaborate
models that let yi ∼ Po(θiηi), where θi represents a random effect and ηi a structured part
characterizing dependence on covariates, hierarchical designs, or spatial or temporal structure. In
the simple case, estimating θ is commonly referred to as the Poisson compound decision problem.
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972 J. DATTA AND D. B. DUNSON

Empirical Bayes approaches have been popular in this context, dating back to the formula of
Robbins (1956). In Robbins’s approach, the θi are assumed to be independent draws from a
distribution G(·), and the goal is to estimate θ = (θ1, . . . , θn)

T depending on the observations
y = (y1, . . . , yn)

T. The accuracy of an estimator θ̂ = δ(y) = {δ1(y1), . . . , δn(yn)}T is assessed by
the risk W (δ) = Eθ {‖δ(y) − θ‖2}. The Bayes estimator that minimizes W (δ) assumes a simple
form for the Poisson kernel, with

δi(yi) =
∫

θip(yi | θi) dG(θi)∫
p(yi | θi) dG(θi)

= (yi + 1)Py(yi + 1)

Py(yi)
(i = 1, . . . , n),

where Py(·) is the marginal distribution of y. Robbins’s frequency ratio estimator uses the empir-
ical frequencies P̂y(z) = n−1∑n

i=1 I (yi = z) to estimate Py. Brown et al. (2013) showed that
slow convergence of P̂y to Py deteriorates performance, and proposed a three-stage smoothing
adjustment that substantially improves the total Bayes risk nW (δ) in simulation studies. Koenker
& Mizera (2014) proposed a computationally efficient approximation to estimating θ by non-
parametrically maximizing the likelihood with respect to the unknown distribution G (Kiefer &
Wolfowitz, 1956).

In this article we develop a hierarchical Bayesian model that allows for quasi-sparsity while
maintaining the ability to capture large signals. The proposed prior is adaptive to the degree of
quasi-sparsity in the data, and is inspired by local-global shrinkage priors for sparse Gaussian
means and linear regression (Carvalho et al., 2010; Armagan et al., 2011, 2013; Bhattacharya
et al., 2015). Such priors are structured as scale mixtures of Gaussian densities for computa-
tional convenience, with corresponding theoretical support when the true mean or regression
vector is mostly zero (van der Pas et al., 2014; Bhattacharya et al., 2015). Naïvely, one could
apply such priors to the coefficients in Poisson log-linear models, but such formulations lack the
computational advantages afforded in the Gaussian case and fail to represent quasi-sparsity.

Our proposed model induces inflation of small counts in a continuous manner, which has
important advantages over zero-inflated Poisson models and their many variants, such as the
zero-inflated generalized Poisson and zero-inflated negative binomial distributions (Yang et al.,
2009). Under a zero-inflated model, the θi are set to zero with probability p or sampled from a
simple parametric distribution, typically either a degenerate distribution at a single θ value or a
gamma distribution. This restrictive parametric form limits performance, as we shall illustrate.
The two-component mixture form also leads to computational instability in quasi-sparse count
examples due to dependence between the parameters p and θ .

2. SHRINKAGE PRIORS FOR COUNT DATA

2·1. Motivation

If θi ∼ Ga(α, βi), the marginal distribution of yi is negative binomial with variance αβi
−1(1+

β−1
i ), which is higher than the mean αβi

−1. To allow for zero-inflation, the usual approach would
be to mix a Poisson or negative binomial distribution with a degenerate distribution at zero. We
instead choose a prior for θi with a pole at zero, leading to a large probability mass in the marginal
distribution for yi at zero. Our Poisson-gamma hierarchical model can be expressed as

yi ∼ Po(θi), θi ∼ Ga(α, λ2
i τ

2), λi ∼ p(λ2
i ), τ 2 ∼ p(τ 2) (λi, τ > 0),
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Shrinkage for quasi-sparse counts 973

where p(λ2
i ) and p(τ 2) are densities for λ2

i and τ 2, respectively. Marginalizing out θi and writing
κi = 1/(1 + λ2

i τ
2), the hierarchical relationship can be rewritten as

p(yi | λi, τ) ∝
(

λ2
i τ

2

1 + λ2
i τ

2

)yi
(

1

1 + λ2
i τ

2

)α

,

p(yi | κi) ∝ (1 − κi)
yiκα

i (α > 0). (1)

This implies that marginally yi follows a negative binomial distribution with size α and probability
of success 1 − κi. The posterior density and mean of θi given yi and κi are, respectively,

p(θi | yi, κi) ∼ Ga(yi + α, 1 − κi), E(θi | yi, κi) = (1 − κi)(yi + α) (α > 0).

Hence, κi can be interpreted as a shrinkage factor pulling the posterior mean towards zero.
Priors on shrinkage factors that have a U-shaped distribution are appealing in shrinking small

signals to zero while avoiding shrinkage of larger signals. In normal linear models, such pri-
ors have been widely used and include the horseshoe (Carvalho et al., 2010), generalized double
Pareto (Armagan et al., 2013), three-parameter beta (Armagan et al., 2011) and Dirichlet–Laplace
(Bhattacharya et al., 2015) priors. In quasi-sparse count applications, we require additional flex-
ibility in the mass of the shrinkage parameter κi around 0 and 1, due to the occurrences of very
low counts in addition to zeros. For example, small counts can arise from measurement errors and
should be separated from true rare events to the extent possible. This requires careful treatment
of the prior for κi.

Consider the three-parameter beta prior (Armagan et al., 2011)

p(κi | a, b, φ) ∝ (1 − κi)
a−1κb−1

i {1 − (1 − φ)κi}−(a+b) (0 � κi � 1; a, b, φ, γ > 0). (2)

Armagan et al. (2011) recommend a, b ∈ (0, 1), leading to both Cauchy-like tails and a kink at
zero. For example, a = b = 1/2 and φ = 1 in (2) leads to κi ∼ Be(1/2, 1/2), where Be(a, b)

denotes the beta distribution with parameters a and b. The horseshoe-shaped Be(1/2, 1/2) prior
combined with the likelihood in (1) produces a (1 − κi)

yi−1/2 term in the posterior, which leaves
all nonzero yi unshrunk. For a = b = 1/2 and φ → 0, the corresponding term in the posterior
would be (1 − κi)

yi−3/2, which shrinks yi � 1.
To extend the flexibility of the prior on κi, while retaining the heavy-tailed property of the

induced marginal prior on θi, we make the exponent in the final term in (2) a general nonnegative
parameter γ . Higher values of γ imply shrinkage of larger observations in the posterior density.
The proposed prior density on κi has the form

GH(κi | a, b, φ, γ ) = Cκa−1
i (1 − κi)

b−1{1 − (1 − φ)κi}−γ (0 � κi � 1; a, b, φ, γ > 0), (3)

where C−1 = B(a, b) 2F1(γ , a, a+b, 1−φ) is the norming constant, with B(a, b) = ∫ 1
0 ta−1(1−

t)b−1 dt being the beta function and 2F1 the Gauss hypergeometric function, i.e.,

2F1(a, b, c, z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k! (|z| < 1),

where (q)k denotes the rising Pochhamer symbol, defined as (q)k = q(q + 1) · · · (q + k − 1)

for k > 0 and (q)0 = 1. Expression (3) corresponds to the Gauss hypergeometric distribution
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Fig. 1. Comparison of the density of κi under the Gauss hypergeometric prior for different values of the hyperparam-
eters: (a) effect of a and b on the prior density of κi, for a = b = 0·5 (solid), a = 0·5 and b = 1·5 (dashed), a = 1·5
and b = 0·5 (dotted), and a = b = 1·5 (dot-dash); (b) effect of γ on the prior density of κi, for γ = 0 (solid), γ = 0·5

(dashed), γ = 1 (dotted), and γ = 2 (dot-dash).

introduced by Armero & Bayarri (1994) for a specific queuing application. We fix a = b = 1/2
and φ = τ 2 for our prior on κi, where τ 2 is a global shrinkage parameter that adjusts to the level
of quasi-sparsity in the data. This prior density is conjugate to the negative binomial likelihood
in (1) and yields the posterior density

p(κi | yi, α, τ , γ ) = κ
α−1/2
i (1 − κi)

yi−1/2{1 − (1 − τ 2)κi}−γ

B(α + 1/2, yi + 1/2) 2F1(γ , α + 1/2, yi + α + 1, 1 − τ 2)
,

κi | yi, α, τ , γ ∼ GH
(
α + 1/2, yi + 1/2, τ 2, γ

)
(α, τ , γ > 0). (4)

Plots of the prior density for different values of the hyperparameters a, b and γ for τ 2 = 0·01
are displayed in Fig. 1. Panel (a) shows the effect of different choices of the parameters a and b
when γ = 1/2, and panel (b) shows the effect of γ on p(κi) for a = b = 1/2.

As Fig. 1 shows, the Gauss hypergeometric prior results in a U-shaped prior density for κi when
a = b = 1/2 with a small τ 2 for different values of γ . This is a general class that includes the
horseshoe prior (Carvalho et al., 2010) as a default shrinkage prior for the sparse normal means
problem. The horseshoe special case is outperformed by better default Gauss hypergeometric
prior specifications in terms of estimation and misclassification error, as we will show in § 4.

The kth posterior moment for κi given yi, α, τ and γ can be written as

E(κk
i | yi, α, τ , γ ) = B(k + α + 1/2, yi + 1/2) 2F1(γ , k + α + 1/2, yi + α + 1 + k , 1 − τ 2)

B(α + 1/2, yi + 1/2) 2F1(γ , α + 1/2, yi + α + 1, 1 − τ 2)
.

(5)

The posterior mean E(κi | yi, α, τ , γ ) can be rapidly calculated using (5) by exploiting the fast
convergence of the Gauss hypergeometric function 2F1(a, b, c, z) for |z| < 1, where τ and γ are
chosen by empirical Bayes or crossvalidation. We show in § 3 that the posterior distribution for
κi will concentrate near 0 or 1 for large or small observations, respectively.

2·2. Impact of hyperparameters

The three hyperparameters α, γ and τ in (4) determine the shape of the posterior density on
κi given yi and control the rate of concentration of the posterior. Small values of α cause the
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Fig. 2. Posterior distribution of the shrinkage parameter κi under the Gauss hypergeometric prior for different values
of the hyperparameter γ : γ = 0 (solid), γ = 0·5 (dashed), γ = 1 (dotted), γ = 5 (dot-dash), and γ = 10 (long-short

dashed). Each row corresponds to a different value of yi ∈ {0, 1, 2, 5, 10}.

mode near κi = 0 to have relatively large mass, minimizing shrinkage of large yi. On the other
hand, the parameter γ can be construed as a pseudo-negative observation in (4) that shrinks small
counts, acting as a threshold when τ → 0. The parameter τ is a global shrinkage parameter
that controls the rate of concentration of the posterior density of κi, as Proposition 2 shows. The
thresholding parameter γ and yi act antagonistically to determine the posterior concentration of
κi near 0 and 1. In particular, if yi is larger than γ , the posterior density concentrates near κi = 0,
indicating no shrinkage. However, a large value of γ relative to yi reinforces the shrinkage by
τ and the posterior density concentrates near κi = 1, allowing for shrinkage of low counts. We
plot the posterior density of κi for different combinations of γ and yi values in Fig. 2. The extra
flexibility that comes with γ results in stronger control of the Type I error probability, as shown
in Proposition 3 below.

3. THEORETICAL PROPERTIES

3·1. Flexible posterior concentration

The posterior mean for θi under our proposed prior can be written as (1 − κ̂i)(yi + α), where
κ̂i denotes the posterior mean E(κi | yi, α, τ , γ ). Hence, it is natural to expect that the posterior
distribution of κi puts increasing mass at zero as yi becomes large relative to the hyperparameter γ .
On the other hand, the posterior distribution of κi concentrates near 1 for values of yi that are small
relative to γ . Indeed, the plots in Fig. 2 show the concentration of the posterior density at either
extreme of the κi scale, depending on the magnitude of γ . There is great flexibility in the shrinkage
profile through the posterior mean θ̂i = (1− κ̂i)(yi +α), with differential shrinkage depending on
the value of γ . We prove this formally in the two propositions that follow. Proposition 1 states that
the posterior probability of an interval around 1 for κi approaches 0 as yi → ∞. Proposition 2
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976 J. DATTA AND D. B. DUNSON

establishes that the posterior distribution of κi concentrates near 1 when yi < γ − 1/2 and
τ → 0.

PROPOSITION 1. Suppose that yi ∼ Po(θi) and let p(κi | yi, α, τ , γ ) denote the posterior
density of κi given yi and fixed α, τ , γ for the Gauss hypergeometric prior (κi | τ , γ ) ∼
GH(1/2, 1/2, τ 2, γ ). Then, as τ → 0,

pr(κi > η | yi, α, τ , γ ) � {�(α + 1/2)}−1(1 − η)y+1/2−γ (y + 1/2 − γ )α−1/2.

For a small τ , p(κi | yi, α, τ , γ ) → δ{0} as yi → ∞, where δ{0} denotes the point mass at 0.

PROPOSITION 2. Suppose that yi ∼ Po(θi), let p(κi | yi, α, τ , γ ) denote the posterior density of
κi given yi and fixed α, τ , γ for the Gauss hypergeometric prior (κi | τ , γ ) ∼ GH(1/2, 1/2, τ 2, γ ),
and let di = γ − 1/2 − yi > 0. Then

pr(κi < η | yi, α, τ , γ ) �
(

τ 2

1 − η

)di

, yi � γ − 1/2.

Hence, for a fixed yi, p(κi | yi, α, τ , γ ) → δ{1} as τ → 0, where δ{1} denotes the point mass at 1.

3·2. Tighter control on false discoveries

A two-group model provides a natural framework for incorporating quasi-sparsity, with the θi
being independent and identical draws from a scale mixture of two gamma distributions

θi ∼ (1 − p) Ga(α, β) + p Ga(α, β + δ) (0 � p � 1). (6)

We are interested in testing H0i : θi ∼ Ga(α, β) against H1i : θi ∼ Ga(α, β + δ) (i = 1, . . . , n).
We set the shape and scale parameters of the null distribution, α and β, to small values to ensure
higher concentration near zero under H0i, and we set δ to a large value relative to β so that the
prior density becomes more flat under H1i. The posterior mean of θi can be written as

E(θi | yi) =
{
(1 − ωi)

β

1 + β
+ ωi

β + δ

1 + β + δ

}
(yi + α) = ω∗

i (yi + α), (7)

where ωi and ω∗
i denote the posterior probability pr(H1i | yi) and the observation-specific shrink-

age weight, respectively. For a fixed β > 0, if δ → ∞, ω∗
i converges to (ωi +β)(1+β)−1, which

is an increasing function of ωi obtained by redistributing the probability mass in [β(1+β)−1, 1].
A multiple testing procedure can be constructed by applying an appropriate thresholding rule to
the shrinkage weights, which could be obtained by clustering the ω∗

i into two classes and using
the decision boundary as the threshold. For sparse θ , β → 0, ω∗

i → ωi, and the testing rule will
reject H0i if ω∗

i > 1/2.
The Gauss hypergeometric prior directly models the shrinkage weight through the hierarchy:

yi ∼ Po(θi), θi ∼ Ga(α, κ−1
i − 1) and κi ∼ GH(1/2, 1/2, τ 2, γ ). Since the posterior mean of θi

is E(θi | yi, α, τ , γ ) = {1 − E(κi | yi, α, τ , γ )}(yi + α), a comparison with (7) suggests that the
term 1−E(κi | yi, α, τ , γ ) mimics the shrinkage factor ω∗

i and induces a multiple testing rule that
rejects H0i if 1 − E(κi | yi, α, τ , γ ) > ξ (i = 1, . . . , n), where ξ is a suitably chosen threshold,
calculated by clustering the shrinkage weights into two groups as described above. The resulting
multiple testing rule yields excellent performance in terms of Type I error and misclassification
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Shrinkage for quasi-sparse counts 977

rates in our simulation studies. We now establish that the probability of Type I error for the
multiple testing rule induced by the Gauss hypergeometric prior decreases exponentially with γ .

PROPOSITION 3. Suppose we have n independent observations y1, . . . , yn such that each yi ∼
Po(θi) and the θi are drawn from the two-group mixture distribution in (6). Under the assumption
τ → 0 as n → ∞, the Type I error probability for the multiple testing rule induced by the Gauss
hypergeometric prior (κi | τ , γ ) ∼ GH(1/2, 1/2, τ 2, γ ) is

t1i = t1 = prH0i
{E(κi | yi, α, τ , γ ) < 1 − ξ} �

( β
1+β

)γ+1/2( 1
1+β

)α−1

(γ + 1/2)B(γ + 1/2, α)
.

Proposition 3 shows the importance of the additional parameter γ in controlling the Type I error
probability when the null distribution of θi is positive and nondegenerate. In particular, the Type I
error rate for the Gauss hypergeometric prior would be lower than that of the three-parameter
beta prior corresponding to the special case of γ = 1, since it has a spike at zero and a heavy tail
but no mechanism for flexible thresholding. The proof is given in the Supplementary Material.

4. SIMULATION STUDIES

4·1. Quasi-sparse count data

In this section, we present two simulation studies to compare the performance of different
estimators for a quasi-sparse Poisson mean vector. We compare our Gauss hypergeometric esti-
mator with the horseshoe estimator, the Kiefer–Wolfowitz nonparametric maximum likelihood
estimator, Robbins’s frequency ratio estimator, a Bayesian zero-inflated Poisson estimator, and
a global shrinkage Bayes estimator. The horseshoe prior is

θi ∼ Ga(α, λ2
i τ

2), λi ∼ C+(0, 1), τ ∼ C+(0, 1) (λi, τ > 0),

where C+(0, 1) denotes a standard half-Cauchy distribution. For the Bayesian zero-inflated
Poisson model, we use a gamma hyperprior on the Poisson mean and a beta prior on the zero-
occurrence probability, where the hyperparameters are estimated from the data. We use average
Bayes risk, ABR(θ) = n−1E�(‖θ̂ − θ‖2), as the estimation performance criterion.

The global shrinkage estimator is obtained by putting a standard conjugate gamma prior on
the Poisson means. The parameters θi and the observations are drawn from the model

yi ∼ Po(θi), θi ∼ (1 − ω)δ{0} + ω|t3| (i = 1, . . . , n),

with |t3| denoting a folded t-distribution with three degrees of freedom.We generate 1000 different
datasets from the above model for each combination of multiplicity n = 200, 500 and proportion
of nonzero parameters ω = 0·1, 0·15, 0·2. For each of the datasets, we estimate θ and report the
mean and standard deviation of the squared error loss for each of the estimators based on these
1000 simulations.

The results are reported in Table 1, with boxplots for ω = 0·2 and n = 200 or 500 shown
in Fig. 3. The Gauss hypergeometric estimator outperforms its competitors in this quasi-sparse
simulation set-up across different values of multiplicity and sparsity. The Kiefer–Wolfowitz
method also performs well, and is a close runner-up in terms of accuracy, while the Bayesian
zero-inflated Poisson model comes in third, with better performance in sparser situations. The
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978 J. DATTA AND D. B. DUNSON

Table 1. Average Bayes risk ABR(θ) = n−1E�(‖θ̂ − θ‖2) and corresponding standard deviation
(in parentheses) for different Bayes and empirical Bayes procedures, with θi ∼ (1−ω)δ{0}+ω|t3|

(i = 1, . . . , n) over 1000 replicates

HS KW GH Robbins Global ZIP Naïve

n = 200 w = 0·1 10·2 (3·7) 11·5 (7·1) 8·2 (6·1) 15·6 (11·4) 29·6 (2·7) 11·2 (3·3) 12·5 (6·0)

w = 0·15 14·9 (6·3) 6·3 (2·5) 5·5 (2·8) 14·1 (10·0) 9·4 (0·8) 8·4 (2·2) 12·7 (4·7)

w = 0·2 19·6 (7·1) 14·0 (7·5) 11·4 (5·9) 17·8 (12·4) 28·1 (3·3) 17·9 (4·5) 19·9 (7·1)

n = 500 w = 0·1 11·1 (3·4) 8·7 (3·2) 7·4 (3·1) 16·6 (9·5) 20·2 (1·2) 7·4 (1·5) 9·2 (2·4)

w = 0·15 18·6 (4·7) 8·0 (1·8) 8·8 (2·5) 18·4 (10·7) 15·2 (0·9) 12·7 (1·9) 16·3 (4·4)

w = 0·2 22·8 (5·5) 13·8 (3·3) 13·1 (3·6) 27·4 (14·9) 26·1 (1·9) 22·5 (2·8) 24·8 (4·4)

HS, horseshoe; GH, Gauss hypergeometric; KW, Kiefer–Wolfowitz; ZIP, zero-inflated Poisson.
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Fig. 3. Boxplots of the average Bayes risk ABR(θ) = n−1E�(‖θ̂−θ‖2) for the competing estimators, namely the horse-
shoe (HS), Gauss hypergeometric (GH), Kiefer–Wolfowitz (KW), Robbins, global shrinkage, zero-inflated Poisson

(ZIP), and naïve estimators, for ω = 0·2 and (a) n = 200, (b) n = 500.

frequency ratio estimator does poorly, and the difference is more prominent for higher multiplicity
values. The global shrinkage prior seems to have the lowest accuracy, as it was not designed to
handle quasi-sparsity. We also report the naïve risk n−1Ê(‖y − θ0‖2) as a baseline to highlight
the poor performance of Robbins’s estimator in this situation.

4·2. Multiple testing

As argued in § 3·2, thresholding the shrinkage weights 1 − κ̂i under the Gauss hypergeometric
prior induces a multiple testing rule for the θi. We show below that the Gauss hypergeometric
decision rule dominates those induced by the Kiefer–Wolfowitz estimator and the three-parameter
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Fig. 4. Number of misclassified hypotheses out of 1000 tests under competing decision rules, namely the
horseshoe/three-parameter beta (HS/TPB) prior, Gauss hypergeometric (GH) prior and Kiefer–Wolfowitz (KW)

method, for different values of the proportion of nonnull effects.

beta prior (Armagan et al., 2011). For the Kiefer–Wolfowitz estimator, we threshold the shrinkage
weights ωi = P̂G(yi)

−1P̂G(yi + 1), where P̂G(·) is the estimated probability mass function. We
choose a = b = 1/2 and φ = τ 2 as the hyperparameter values for the three-parameter beta prior,
which makes the prior density on κ identical to that induced by the horseshoe prior of Carvalho
et al. (2010).

We generate n = 200 observations from a contaminated zero-inflated model, where yi is
either zero with probability 1 − ω or drawn from a Po(4) distribution with probability ω. We
contaminated the data by setting a proportion p of the zeros equal to 1. Our goal is to detect
the nonnull parameters. The nonnull parameter value λ = 4 is chosen to be of the order of
the maximum order statistics X(n) of n independent and identically distributed Po(1) random
variables. The motivation here is similar to that for the hard-thresholding estimate of Donoho &
Johnstone (1994) for Gaussian sparse signal detection, where an observation is treated as a signal
only if it exceeds E(X(n)) = 2 log n, the expected value of the maximum among n pure noises.
For Poisson counts, X(n) lies inside the interval [In, In + 1] with probability 1 as n → ∞, where
In ∼ log n/(log log n) (Kimber, 1983), and the midpoint of the interval is I200 + 0·5 = 3·67.
Following § 3·2, the decision rule induced by the shrinkage priors is to reject the ith null hypothesis
if 1 − E(κi | yi, α, τ , γ ) > ξ for some fixed threshold ξ . We calculated this threshold by applying
the k-means clustering algorithm to the shrinkage weights with number of clusters k = 2 and
setting ξ to be the mean of the cluster centres. To compare the shrinkage priors, we calculate
the number of misclassified hypotheses over 1000 simulated datasets for 10 equidistant values
of the proportion of sparsity ω ∈ [0·1, 0·3]. We fixed the value of the contamination proportion
p at 0·1. The boxplots of the number of misclassification errors, shown in Fig. 4, and the mean
number of misclassified hypotheses, reported in Table 2, suggest that the Gauss hypergeometric
decision rule outperforms the methods induced by the three-parameter beta prior and by the
Kiefer–Wolfowitz method for these quasi-sparse examples. Further simulation studies in the
Supplementary Material show that the Gauss hypergeometric prior is superior to its competitors
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Table 2. Mean misclassification errors for the three-parameter beta prior, the
Gauss hypergeometric prior and the Kiefer–Wolfowitz nonparametric maximum

likelihood estimator

Sparsity 0·3 0·27 0·25 0·23 0·21 0·18 0·16 0·14 0·12 0·1
HS/TPB 7·1 7·1 7·0 6·5 6·5 6·3 6·2 6·3 5·8 5·6
GH 5·9 5·4 4·7 4·4 4·0 3·5 3·0 2·7 2·1 1·7
KW 13·7 12·7 11·7 10·5 9·0 7·6 6·1 4·8 3·4 2·8
HS, horseshoe; TPB, three-parameter beta; GH, Gauss hypergeometric; KW, Kiefer–Wolfowitz.

when the θi are drawn from a mixture of gamma distributions with the null hypothesis favouring
higher concentration near zero.

5. DETECTING RARE MUTATIONAL HOTSPOTS

In this section, we apply our methods to count data arising from a massive sequencing study
called the Exome Aggregation Consortium. This database reports the total number of mutated
alleles or variants along the whole exome for 60 076 individuals, and provides information about
genetic variation in the human population. It is widely recognized in the scientific community
that these rare changes are responsible for both common and rare diseases (Pritchard, 2001).
The frequency of mutated alleles is very low or zero at a vast majority of locations across
the genome but is substantially higher in certain functionally relevant genomic locations, such
as promoters and insulators (Lewin et al., 2014). An important problem in the study of rare
mutations is identification of such mutational hotspots where the mutation rate significantly
exceeds the background rate. This is important since these mutational hotspots might be enriched
with disease-causing rare variants (Ionita-Laza et al., 2012).

Our goal is to use the method developed in this article to identify potential hotspots harbouring
rare variants in a genomic region. We first filter out the common variants with minor allele
frequency greater than 0·05% on a gene, PIK3CA, known to be responsible for ovarian and
cervical cancers (Shayesteh et al., 1999). The mutation dataset contains the number of mutated
alleles along the gene PIK3CA for 240 amino acid positions ranging from 0 to 1066. The flexible
shrinkage property of the Gauss hypergeometric prior should yield better detection of the true
hotspots by better shrinking low counts. The number of mutated alleles at the ith position, denoted
by yi, ranges from 0 to 58. We model yi ∼ Po(Niθi) independently, where θi is the mutation rate
and Ni is the number of alleles sequenced at location i. We make the simplifying assumption of
uniform sequencing depth across the gene such that Ni = N for all i, but in general the sequencing
depth is dependent on location. Since each individual carries two copies of each allele that could
harbour a rare variant, Ni is also equal to twice the number of individuals sequenced at that
position.

We compare the shrinkage profile of the Gauss hypergeometric prior with those of the three-
parameter beta/horseshoe prior and the Kiefer–Wolfowitz estimator in terms of the number of
mutational hotspots identified. We apply the multiple testing rule proposed in § 4·2 to identify the
variants for which the number of mutated alleles is substantially higher than the background.
The number of variants identified as nonnull using the Gauss hypergeometric prior, three-
parameter beta/horseshoe prior and Kiefer–Wolfowitz method are 7, 81 and 56, respectively.
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Fig. 5. Comparison of the shrinkage profiles for the Gauss hypergeometric (GH) prior, three-parameter beta/horseshoe
(TPB/HS) prior, and Kiefer–Wolfowitz (KW) nonparametric maximum likelihood estimator via scatterplots of the

corresponding shrinkage weights.

Figure 5 shows the posterior probabilities ωi of the competing methods; the Gauss hypergeomet-
ric prior has a sharpened ability to segregate the substantially higher signals from the background
noise.

6. IDENTIFYING NORTH AMERICAN CITIES WITH THE MOST TERRORIST ATTACKS

We consider an application to a database containing details of all terrorist attacks in the world
since 1970, including the location and type of each attack. The global terrorism database defines
a terrorist attack as ‘the threatened or actual use of illegal force and violence by a non-state actor
to attain a political, economic, religious, or social goal through fear, coercion, or intimidation’.
We focus on terrorist attacks in North America, aggregated over the years of observation at the
level of cities, and our goal is to identify the cities that have been worst hit. As expected, there
are many cities with zero or small counts, and a few cities with large counts, such as New York
City, Mexico City and Miami. We apply our method to identify the cities with high attack rates.
Figure 6 shows the observed counts of terrorist attacks along with the posterior mean estimates of
the rates for North American cities obtained using three different methods; we show only nonzero
observations. As expected, the Gauss hypergeometric method selects the fewest cities, while the
Kiefer–Wolfowitz method selects every city that experienced at least one attack. This illustrates
the robustness of the Gauss hypergeometric estimator with respect to very small counts, which
may correspond to either very sporadic events or errors in recording; for example, an attack may
be mislabelled as terrorism-related. Methods that naïvely select all locations with nonzero counts
are not very useful in practice.
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Fig. 6. The total number of terror attacks in North American cities since 1970, together with the posterior mean
estimates of the rate of terror attacks under the horseshoe (HS) prior, the Gauss hypergeometric (GH) prior, and the
Kiefer–Wolfowitz (KW) estimator. The size and opacity of the points on the maps increase with the value of the
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of the theoretical
results, a further simulation study, more details about the data analysed in § 5, and discussion of
the performance of the Gauss hypergeometric prior for zero-inflated data without covariates.
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